178 research outputs found

    Simulations of working memory spiking networks driven by short-term plasticity

    Get PDF
    Working Memory (WM) is a cognitive mechanism that enables temporary holding and manipulation of information in the human brain. This mechanism is mainly characterized by a neuronal activity during which neuron populations are able to maintain an enhanced spiking activity after being triggered by a short external cue. In this study, we implement, using the NEST simulator, a spiking neural network model in which the WM activity is sustained by a mechanism of short-term synaptic facilitation related to presynaptic calcium kinetics. The model, which is characterized by leaky integrate-and-fire neurons with exponential postsynaptic currents, is able to autonomously show an activity regime in which the memory information can be stored in a synaptic form as a result of synaptic facilitation, with spiking activity functional to facilitation maintenance. The network is able to simultaneously keep multiple memories by showing an alternated synchronous activity which preserves the synaptic facilitation within the neuron populations holding memory information. The results shown in this study confirm that a WM mechanism can be sustained by synaptic facilitation

    Effect of data harmonization of multicentric dataset in ASD/TD classification

    Get PDF
    Machine Learning (ML) is nowadays an essential tool in the analysis of Magnetic Resonance Imaging (MRI) data, in particular in the identification of brain correlates in neurological and neurodevelopmental disorders. ML requires datasets of appropriate size for training, which in neuroimaging are typically obtained collecting data from multiple acquisition centers. However, analyzing large multicentric datasets can introduce bias due to differences between acquisition centers. ComBat harmonization is commonly used to address batch effects, but it can lead to data leakage when the entire dataset is used to estimate model parameters. In this study, structural and functional MRI data from the Autism Brain Imaging Data Exchange (ABIDE) collection were used to classify subjects with Autism Spectrum Disorders (ASD) compared to Typical Developing controls (TD). We compared the classical approach (external harmonization) in which harmonization is performed before train/test split, with an harmonization calculated only on the train set (internal harmonization), and with the dataset with no harmonization. The results showed that harmonization using the whole dataset achieved higher discrimination performance, while non-harmonized data and harmonization using only the train set showed similar results, for both structural and connectivity features. We also showed that the higher performances of the external harmonization are not due to larger size of the sample for the estimation of the model and hence these improved performance with the entire dataset may be ascribed to data leakage. In order to prevent this leakage, it is recommended to define the harmonization model solely using the train set

    New Techniques in Diagnostic X-ray Imaging: A Simulation Tool and Experimental Findings

    Get PDF
    AbstractAbsorption X-ray imaging is a well-established technique. However it is still a challenging task in its search for a compromise between the need for high spatial resolution and high contrast and the request to keep the dose delivered to the patient within acceptable values. New imaging techniques are under investigation, like the use of new X-ray sources, phase contrast imaging or K-edge imaging. Monte Carlo or analytic simulations are often the best way to test and predict the effectiveness of these techniques. A new simulation tool for X-ray imaging will be presented together with some applications to the characterization of new X-ray sources, in-line phase contrast effect and angiographic K-edge imaging. Simulation results will be compared also with experimental dat

    Fast Simulations of Highly-Connected Spiking Cortical Models Using GPUs

    Get PDF
    Over the past decade there has been a growing interest in the development of parallel hardware systems for simulating large-scale networks of spiking neurons. Compared to other highly-parallel systems, GPU-accelerated solutions have the advantage of a relatively low cost and a great versatility, thanks also to the possibility of using the CUDA-C/C++ programming languages. NeuronGPU is a GPU library for large-scale simulations of spiking neural network models, written in the C++ and CUDA-C++ programming languages, based on a novel spike-delivery algorithm. This library includes simple LIF (leaky-integrate-and-fire) neuron models as well as several multisynapse AdEx (adaptive-exponential-integrate-and-fire) neuron models with current or conductance based synapses, different types of spike generators, tools for recording spikes, state variables and parameters, and it supports user-definable models. The numerical solution of the differential equations of the dynamics of the AdEx models is performed through a parallel implementation, written in CUDA-C++, of the fifth-order Runge-Kutta method with adaptive step-size control. In this work we evaluate the performance of this library on the simulation of a cortical microcircuit model, based on LIF neurons and current-based synapses, and on balanced networks of excitatory and inhibitory neurons, using AdEx or Izhikevich neuron models and conductance-based or current-based synapses. On these models, we will show that the proposed library achieves state-of-the-art performance in terms of simulation time per second of biological activity. In particular, using a single NVIDIA GeForce RTX 2080 Ti GPU board, the full-scale cortical-microcircuit model, which includes about 77,000 neurons and 3 · 108 connections, can be simulated at a speed very close to real time, while the simulation time of a balanced network of 1,000,000 AdEx neurons with 1,000 connections per neuron was about 70 s per second of biological activity

    Phase Contrast Imaging Using a Single Picosecond X-ray Pulse of the Inverse Compton Source at the Bnl Accelerator Test Facility

    Get PDF
    Inverse Compton scattering (ICS) X-ray sources are of current interest due to their novel features that enable new methods in medical and biological imaging. As a compelling example of such a possibility, we present an experimental demonstration of single shot inline phase contrast imaging using the ICS source located at the BNL Accelerator Test Facility. The phase contrast effect is clearly observed in the images obtained. Further, its qualities are shown to be in agreement with the predictions of theoretical models through comparison of experimental and simulated images of a set of plastic wires of differing composition and size. We also display an example of application of the technique to single shot phase contrast imaging of a biological sample

    ANNABELL, a cognitive system able to learn different languages

    Get PDF
    © 2018 The authors and IOS Press. All rights reserved. ANNABELL is a cognitive system entirely based on a large-scale neural architecture capable of learning to communicate through natural language starting from a tabula rasa condition. In order to shed light on the level of cognitive development required for language acquisition, in this work the model is used to study the acquisition of a new language, namely Albanian, in addition to English. The aim is to evaluate in a completely different and more complex language the ability of the model to acquire new information through several examples introduced in the new language and to process the acquired information, answering questions that require the use of different language patterns. The results show that the system is capable of learning cumulatively in either language and to develop a broad range of language processing functionalities in both languages

    Runtime Construction of Large-Scale Spiking Neuronal Network Models on GPU Devices

    Get PDF
    Simulation speed matters for neuroscientific research: this includes not only how quickly the simulated model time of a large-scale spiking neuronal network progresses but also how long it takes to instantiate the network model in computer memory. On the hardware side, acceleration via highly parallel GPUs is being increasingly utilized. On the software side, code generation approaches ensure highly optimized code at the expense of repeated code regeneration and recompilation after modifications to the network model. Aiming for a greater flexibility with respect to iterative model changes, here we propose a new method for creating network connections interactively, dynamically, and directly in GPU memory through a set of commonly used high-level connection rules. We validate the simulation performance with both consumer and data center GPUs on two neuroscientifically relevant models: a cortical microcircuit of about 77,000 leaky-integrate-and-fire neuron models and 300 million static synapses, and a two-population network recurrently connected using a variety of connection rules. With our proposed ad hoc network instantiation, both network construction and simulation times are comparable or shorter than those obtained with other state-of-the-art simulation technologies while still meeting the flexibility demands of explorative network modeling

    Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model

    Get PDF
    The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is detrimental. Despite the importance of the phenomenon, a complete understanding of its functions and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised enhancement of connections among groups of neurons associated to instances of the same class (digit) and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical organization of post-sleep internal representations favours higher performances in retrieval and classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour the activation of other neurons coding for similar thalamic inputs, promoting their association. Such mechanism hints at possible applications to artificial learning systems

    Thalamo-cortical spiking model of incremental learning combining perception, context and NREM-sleep

    Get PDF
    The brain exhibits capabilities of fast incremental learning from few noisy examples, as well as the ability to associate similar memories in autonomously-created categories and to combine contextual hints with sensory perceptions. Together with sleep, these mechanisms are thought to be key components of many high-level cognitive functions. Yet, little is known about the underlying processes and the specific roles of different brain states. In this work, we exploited the combination of context and perception in a thalamo-cortical model based on a soft winner-take-all circuit of excitatory and inhibitory spiking neurons. After calibrating this model to express awake and deep-sleep states with features comparable with biological measures, we demonstrate the model capability of fast incremental learning from few examples, its resilience when proposed with noisy perceptions and contextual signals, and an improvement in visual classification after sleep due to induced synaptic homeostasis and association of similar memories
    corecore